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The growth of Taylor vortices in flow between 
rotating cylinders 

By A. DAVEY 
National Physical Laboratory, Teddington, Middlesex 

(Received 11 May 1962) 

In  flow between concentric rotating circular cylinders, it was shown by Taylor 
(1923) that instability may occur in the form of toroidal vortices spaced regularly 
along the axis. When the vortex motion occurs additional torque is required to 
keep the cylinders inmotion at  given speeds. Stuart (1958) used an energy-balance 
method, in the case when the annular gap is small compared with the radius, to 
estimate the additional torque and the associated finite amplitude attained by 
the vortices. He included the effect of distortion of the mean motion, but ignored 
the generation of harmonics of the fundamental mode and the distortion of the 
velocity associated with the fundamental mode. It is now known that these are 
not valid mathematical approximations and a rigorous perturbation expansion 
is developed here to remedy the deficiency. The analysis is valid for any gap width 
and any angular speeds of the containing cylinders, but requires the amplification 
rate of the disturbance to be small. 

Numerical results using a digital computer are obtained for the shape and 
amplitude of the vortices in three cases: (i) when the outer cylinder has twice the 
radius of the inner one and is kept a t  rest, (ii) when the gap is small and the 
cylinders rotate with nearly the same speeds, and (iii) when the gap is small and 
the outer cylinder is kept a t  rest. The equilibrium amplitude obtained in the last 
case is substantially the same as that found by Stuart. 

The results for cases (i) and (iii) give close agreement with the experimental 
values obtained by Taylor (1936) and Donnelly (1958) for the torque required to 
keep the inner cylinder rotating with constant speed while the outer one is at  rest, 
for a certain range of speeds. In  the small-gap problem it is shown that the 
equilibrium amplitude is almost proportional to 1 - m, where m is the ratio of the 
angular speeds of the outer and inner cylinders. 

1. Introduction 
Taylor has shown, both theoretically (19623) and experimentally (1923,1936), 

that the flow between two concentric rotating circular cylinders becomes unstable 
if the speed of the inner cylinder is increased above a critical value. The disturb- 
ance takes the form of cellular toroidal vortices spaced regularly along the axis 
of the cylinders. The finite strength of the vortices is a function of the angular 
speeds of the cylinders, and in Taylor’s (1936) experiments this was illustrated by 
the dependence of torque on angular speed. Taylor’s theoretical analysis consisted 
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of a mathematical examination of the conditions under which the amplitudes of 
cellular disturbances (of the kind observed in experiments) grow or decay with 
time. To this end the equations of motion are linearized for small amplitudes of 
disturbance, and the condition for neutral (or marginal) stability can be found. 
For given ratios of radii and angular speeds, the condition takes the form of a 
relationship between a velocity parameter (the Taylor number T) and the wave- 
number of the periodic disturbance. For a given wave-number the disturbance is 
amplified if the Taylor number lies above its critical (neutral-stability) value for 
that wave-number, and is damped if the Taylor number lies below that value. 
We may refer to the two regions as supercritical and subcritical respectively. 
According to linearized theory the amplification or damping of non-neutral 
disturbances takes place exponentially with time. The theoretical conditions for 
neutral stability were amply confirmed by Taylor’s (1923) experimental observa- 
tions, for several ratios of both the angular speeds and the cylinder radii. 

An additional problem arises, however, in the (supercritical) region where 
linearized theory predicts a disturbance which increases exponentially with time. 
According to Taylor’s (1923, 1936) experiments the cellular disturbances do not 
show continual amplification with the passage of time; rather a finite equilibrium 
amplitude is attained. It is clear that this effect is obscured by the theoretical 
linearization of the equations, and it is to be expected that non-linear amplitude 
effects will be important when the amplitude has grown to such values that 
linearization is invalid. The non-linear mechanics of such supercritical disturb- 
ances have been studied comprehensively by Stuart (1958, 1960a) and by Wat- 
son (1960). In  the former of Stuart’s papers, an energy-balance method was used 
to study the rotating cylinder problem in the special, but important, case when 
the outer cylinder is at  rest and the inner one rotates, and the gap width is small. 
It was assumed that the fundamental of the disturbance was given spatially by 
linearized theory and that harmonics of the fundamental mode were unim- 
portant. With the amplitude as an unspecified function of time, its equilibrium 
value was determined from the mean-motion equations and the energy integral of 
the disturbance, in terms of integrals of the spatial functions of linear stability 
theory. The mean motion is distorted by the Reynolds stress, and from the 
modified mean motion Stuart determined the torque required to maintain the 
motion; this was compared with the experimental observations of Taylor (1936). 

For a wide range of the Taylor number above the critical value, the agreement 
between Stuart’s values for the torque and those of Taylor is quite good. How- 
ever, it is now known (Stuart 1960b) that even for a first approximation to the 
equilibrium amplitude one must take into account the generation of the harmonic 
of the fundamental and the distortion of the fundamental itself with regard t o  its 
radial dependence. 

In  this paper we develop a rigorous perturbation expansion for arbitrary gap 
width and any speeds of the containing cylinders, in order to determine the non- 
linear growth and equilibrium state of the vortices. The method requires the 
amplification rate of linearized theory to be sufficiently small. The problem is 
taken to be one with rotational symmetry, since unsymmetrical disturbances are 
important only at Taylor numbers rather larger than those considered here 
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(Coles 1960). For a sufficiently small amplification rate cr, the equilibrium 
amplitude A,  of the fundamental is given by an equation of the form 

O = a-4: + (k,+ k, + k3) 

where k,, k,, k, are constants. Now k, essentially represents the energy transfer 
from the mean motion to the fundamental disturbance, due to distortion of the 
mean motion by the Reynolds stress; it is negative. The term containing k, 
represents transfer of energy from the fundamental to its first harmonic and 
the term k, represents the net energy transfer to the fundamental due to 
distortion of the fundamental with regard to its radial dependence. The torque 
required to maintain the motion also depends to first-order upon k,, k, and k, 
and upon the eigenfunctions of linearized theory. 

In  $ 5  5 and 7 numerical results obtained by using a digital computer are given 
for the three cases: (i) when the outer cylinder has twice the radius of the inner 
one and is kept at  rest, (ii) when the gap is small and the cylinders rotate with 
nearly the same speeds, and (iii) when the gap is small and the outer cylinder is 
kept a t  rest. In  the simplest case, (ii), the linear stability problem is governed by 
a sixth-order differential equation with constant coefficients. The computer was 
used to determine the eigenfunctions and higher-order functions associated with 
the disturbance, and from these calculations the values of k,, k, and k, were 
obtained. In  case (iii), when the outer cylinder is at  rest, similar quantities are 
determined. It is clear from the results of (ii) and (iii), and from an examination 
of the terms in the relevant equations, that, in the small-gap problem, k, + k, + k, 
is almost proportional to (1 - m)-, for any speed of the outer cylinder (provided 
it is in the same sense as that of the inner cylinder). Another interesting result is 
that in (iii) the harmonic of the fundamental derives nearly all its energy directly 
from the mean motion, rather than from the fundamental. Since it cannot exist 
without the fundamental it seems as though the fundamental plays the role of a 
‘catalyst ’. 

The theoretical results given in $ 5 for case (i), the wide-gap problem, include 
a prediction of the additional torque required to maintain the vortices. Agree- 
ment with experimental results is very close, and is obtained over a far wider 
range of the Taylor number than one would expect, especially since, at  these 
higher Taylor numbers, non-symmetric disturbances may be present. Pre- 
sumably this is either numerically fortuitous, or occurs because the basic 
energetics of the flow change very slowly as the Taylor number is raised. 

This additional torque is also predicted in $7.2  for case (iii), the small-gap 
problem with the outer cylinder at rest. Good agreement is found with experi- 
mental results near to the critical speed. These results may be compareddirectly 
with those of Stuart (1958), who neglected the terms leading to k,, k,, determined 
the eigenfunctions with the approximation m = 1 from a variational procedure 
(Chandrasekhar 1953), and based his calculations on the neutral disturbance. 
When the cylinders rotate with nearly the same speeds, his method gives accurate 
results compared with the present calculation (when m + 1); and when the outer 
cylinder is at  rest, his result also is in good agreement with experiment and with 
the present theory. 
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2. Analysis of the basic equations 
We use cylindrical co-ordinates ( r ,  0, z )  and denote the corresponding velocity 

components by (u,v,w). We assume that the flow is axisymmetrical so that 
u, v, w are independent of 0. It is known from experimental work that the dis- 
turbance usually takes the form of cellular toroidal vortices spaced regularly 
along the axis of the cylinders; dependence on the azimuthal angle only occurs at  
higher Taylor numbers than those considered for any particular case in this paper. 

The Navier-Stokes and continuity equations are 

where 

1 aw aw aw 1 
~- R a t  +u-+w- = -*+-v2w, 

ar az ax R (2.3) 

In  the above p denotes the pressure, R the Reynolds number and t the time. All 
quantities have been made dimensionless, the reference length being the distance 
d = r2 - rl between the cylinders (the outer and inner cylinders having radii r2, rl 
respectively), the reference velocity being R, r1 where R, is the angular velocity 
of the inner cylinder, the reference time being d2/v  and the reference pressure 
pR2, r2, where p is the fluid density (see Kirchgassner 1961). The Reynolds number 
R = R, rl dlv,  where v is the kinematic viscosity. 

The boundary conditions are 

(2.6) I u = v- 1 = w = 0 

u = v-m(l+d/r,)  = w = 0 

when r = rl/d,  
when r = r, /d+l ,  

where m = R2/Rl is the ratio of the angular speeds of the outer and inner 
cylinders respectively. 

For steady laminar Couette flow one has 

where 

We will consider the growth of an infinitesimal disturbance which, as t + -a, 
takes the form 

u = u,(r)cosAzevt, v = vl(r)cosAzeut, w = w,(r)sinAzeut. (2.9) 

The linear stability problem (Chandrasekhar 1953) is then determined by 
(DD* -A') (DD* - A'- g)2v1 = 4A0 QA2R2v1, (2.10) 

22-2 



340 A .  Davey 

where 
(2.11) 

so that Q(r) denotes the angular speed of the mean motion. The boundary condi- 
tions are 

vl = DD*v, = D(DD*-h2-~)v l  = 0, when r =rl/d and r = rl/d+ 1. 
(2.12) 

These conditions determine a characteristic equation 

F(a,  A, 8; r2b.1, W Q l )  = 0. (2.13) 

Thus, for fixed R7rz/rl ,  Q2/Q1 equation (2.13) determines (T for each wave- 
number A. Experimental evidence supports the assumption that for R not too 
large and for all A, (T is real, as we will assume, so that the disturbance takes the 
form of a non-oscillatory flow. 

For a specific fluid with rl, r2, QZ fixed, instability first occurs when Q, attains 
a critical value at  which G = 0 for some wave-number A. In  general there is a 
denumerable number of (Q,, A)-curves given by (T = 0, each corresponding to a 
different mode of instability. However, even when considering the growth of a 
finite disturbance it is the lowest mode which is most important and for given 
Q1, h we take G to be as given by perturbation from the lowest mode. For marginal 
stability (G = 0 ) ,  there is a unique wave-number h which makes Ql a minimum, 
that minimum being the critical value. In  general (2.10) with the boundary 
conditions (2.12) is difficult to solve because SZ is not constant. The problem is 
simplified in cases where i2 may be satisfactorily approximated to by a constant. 

The infinitesimal disturbance (2.9) satisfies the linear instability equations 
exactly and involves terms of the form f ( r ,  t )  cos hz andf(r,  t )  sinhz. However, 
when the non-linear terms in (2.1), (2.2) and (2.3) are not neglected the disturb- 
ances react with themselves and the main flow, generating higher harmonics of 
the form 

fn(r,t)sinnhz (n = 2,3,  ...). 

Thus it seems permissible to expand the disturbance velocity by using Fourier 
series. We take a representation of the form 

cos 

W 

u = ur = I: un(r, t )  cos nhz, (2.14) 

v = 3 + vr  = 3(r, t )  + C vn(r, t )  cos nhz, (2.15) 

w = wr = 2 wn(r, t )  sinnhz. (2.16) 

In  linearized theory the limit as t --f - co of 3(r,  t )  is the steady laminar solution 
and also as t --f - 00 we have unIul, vn/vl, wn/wl -+ 0 for n 2 2 and ul(r, t ) ,  vl(r, t )  
and wl(r, t )  tend to ul(r) eat, vl(r) eUt and wl(r) efft respectively, where ul(r) ,  wl(r) 
and wl(r) are thesolutions (2.9). From (2.1) and (2.3) it follows that the pressure 
must be expressible in the form 

n=l 
m 

n= 1 
W 

n=l 

- 
p = P+p' = P(r, t )  + C pn(r, t )  cos nhz. 

n= 1 
(2.17) 
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The boundary conditions on the finite disturbance are that the mean velocity V 
takes the same values on the two cylinders as does the undisturbed velocity, that 
the disturbance velocities u’, v‘ and w‘ vanish on the two cylinders, and that just 
enough external power is supplied to maintain the angular speeds of the cylinders 
at constant values, in accordance with the variation with time of the mean skin- 
friction on the cylinders. 

Thus we must have 

9 = 1 at r = r,/d, V = m(1 +d/r , )  at r = r , /d+ 1,) 

(2.18) 
(n = 1,2, ...). 

u, = v, = w, = 0 

u, = v, = w, = 0 

at r = rJd,  
at r = r,/d+l, 

Now substitute (2.14), (2.15), (2.16) in (2.1), (2.2), (2.3) and (2.4). The mean- 
motion equations obtained by equating terms which are independent of z are, as 
given by Stuart (1958), 

aF (2.19) 
l a  - 1 -  
r ar r ar 
- - ( r u ‘ 2 ) - - ( ~ ’ 2 + V 2 )  = --, 

.. 
(2.20) 

where a bar above a quantity denotes a, mean value with respect to 2. The 
disturbanceequationsfound by subtracting (2.19) from (2.1) and (2.20)from (2.2), 
and from (2.3) and (2.4) are 

where 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) a 
r2 ar a Z  

i a  - x2 = - - (r2u‘v’ - r2u’v’) + - (v’w’). 

Using the Fourier expansions for u’ and v‘ we may write the mean-motion 
equation (2.20) in the form 

(2.27) 

Now eliminate p’ between (2.21) and (2.23) by differentiating the former with 
respect to z, the latter with respect to r and subtracting one from the other. 
Next, from the resulting equation, eliminate w‘ by using (2.24) and (2.16) and 
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use the expansions (2.14) and (2.15) so that the nth (n > 1) component may be 

(2.28) 
selected to  yield 

T,(nh) u, - 2nh5vn/r = Q1 + Q 2 ,  I- 

where Q1 is a quadratic function of the ui (i > 1) and Q2 is a quadratic function of 
the vi (i > I), and where the operator Tl(nh) is defined by 

T,(nh) = (l/nhR) (99* - n2h2) (99* -n2h2 - a/at),  (2.29) 

with 9 = a/& and 9* = (a/ar)+(l/r). (2.30) 

Moreover, we use the expansions (2.14) and (2.15) in equation (2.22) and select 
the nth (n > 1) component to give 

(1/R) (99*-n2h2-8/at)vn-  (9*G)u, = Q3+Q4+Q5,  (2.31) 

where Q3, Q4 and Q5 are linear functions of the quantities uivj with i,j 2 1. Thus 
the problem now is to determine u,, v, and 5 from the infinite set of partial 
differential equations (2.28), (2.31) and (2.27). 

3. Determination of disturbance growth 
We are interested in the growth of a supercritical disturbance when the Taylor 

number is larger than its critical value. Thus we seek a solution of the equations 
of motion which represents a small finite disturbance, whose amplitude grows 
with time, with the property that as t + - 00 the disturbance tends through the 
infinitesimal disturbance of linear theory to zero. 

Hence as t -+ - 00, we must have ul(r, t) N Cul(r) euh, vl(r, t) N Cv,(r) ed, while 
u, + 0, v, -+ 0 (n > 1) more rapidly, where C is a constant. Thus we look for a 
solution in u,, v, which is separable and we suppose the highest-order terms in 
ul(r ,  t )  and vl(r, t) to be of the form A(t) ul(r) and A(t)  vl(r) respectively, whereA(t) 
is some, possibly bounded, function which behaves like C eUt as A -+ 0. We seek a 
solution in which A is small and which is such that A - l d A / d t  is a function of 
A only. Thus we seek a solution for which 

(3.1) A-l d A / d t  = a + smaller-order terms. 

By setting 

and 

in (2.28) and (2.31) with n = 1, dividing by A and letting A -+O we obtain 

ul(r, t) = A(t)  ul(r) + smaller-order terms 

vl(r, t) = A(t)  vl(r) + smaller-order terms 

(DD* - h2) (DD* - h2- a) u1 - 2h2RGl v,/r = 0, (3.2) 

and (3-3) 

with D, D* as defined by (2.11). These are the equations which determine the 
eigenfunctions ul(r) and vl(r) of linear theory and are equivalent to (2.10). 

(DO* - h2- a) v1 - 2 4  Ru, = 0, 

t Full details of Ql, Q2, and of Q3, Q4 ,Qs occurring in (2.31) may be found in the author's 
thesis (1961). 
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An investigation of (2.27), (2.28) and (2.31), similar to those of Stuart (1960a) 
and Watson (1960), suggests that we look for a solution of 5, u,, wn of the form 

~z,u,,(i)) (n 2 11, (3.4) 

(3.5) 
03 

W 

V = i$+ 2 AZmfm(r), 
m=l 

where am (m 2 1)  are unknown constants; this leads to no inconsistency. 
For the growth of our disturbance we are interested in the range of A between 

zero and the first non-zero positive root of the right-hand side of (3.7). The most 
important thing to do is to evaluate the constant a,. Previous theoretical work 
by Stuart (1958) indicated that for the case when d/r ,  is small, a1 is negative and 
non-zero. This is confirmed in Q 7 of this paper, and the results of Q 5 also indicate 
that a, is negative and non-zero when d/r ,  is not small. Provided the constants 
a,  (m 2 1)  are bounded as CT + 0 it  is clear from (3.7) that, if A, is the equilibrium 
amplitude, and is not large, then A2, = ( - cr/al) ( 1  + O(A2)). In  fact ( - g / a l )  is 
a good approximation to A: for a wider range of Taylor numbers above the critical 
than one would expect, possibly because az is much smaller than a,. Thus evalua- 
tion of a1 will tell us to order c the value of A:, and consequently, to the same 
order, the additional torque required to maintain the constant angular speeds of 
the cylinders. If we also calculate a2 then we shall be able to determine A: and 
the torque correct to order uz and such values, even for a wide gap, will possibly 
be quite accurate for a wide range of Taylor numbers above the critical. 

Wewillnowuse thesubstitutions (3.4), (3.5), (3.6)and (3.7)primarilytoobtain 
the equations for um(r), unm(r), wn(r), wnm(r), f,(r) which involve a, but more 
specifically to obtain first ul, wl, fl, uz, w2 followed by a, and ull, w,,; and secondly 
to obtain f z ,  us, w3, uZ1, wzl followed by az and u12, w12. 

From (2.28) and (2.31) with the substitutions (3.4)-(3.7), dividing both sides 
by their common factor A", and equating terms in each equation which are 
independent of A we obtain 

1 
- (DD* - n2h2 - ncT) vn(r) - 2A,u,(r) 
R 

and 

- d (run-p)] ,  (3.9) 
n - p ) - 2 ( n - p ) r d r  

where Ll(nh) = (l/nhR) (DD* - n2h2) (DD* - n2h2 - TZCT).  (3.10) 
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Balancing coefficients of Ant2  in the equations obtained from (2.28) and (2.31) 
we obtain 

(l/nhR) [(DD" - n2h2) (DO* - n2h2 - (n + 2 )  a)] u,, 

- (2nh/r)(~,vn,+vnfJ  = (a,/=) (DD*-n2h2)un+gn1(r), (3.11) 
and 

R-l(DD* - n2h2 - (n + 2 )  a)  vn1 - 2Ao u,, = (na,/R) V, + U, D*f1+ h,I(r), (3.12) 

where gnm(r), h,,(r) are the coefficients of A2mfn ontheright-hand sides of (2.28) 
and (2.31) on using (3.4)-(3.7). In  particular we shall need 

4hg,,(r) 3 D(u, D D * u ~  - ~ u ~ D D * u ,  + D * u ~  D * u ~ )  

+ h 2 ( 4 ~ , ~ 2 / r - 4 D * ( ~ l ~ 2 )  +u,D*u,- ~ u ~ D * u , ) ,  (3.13) 

and 4h,,(r) = (2/r2) d(r2(u, u2 + u2 v,)}/dr - u1 D*u2 + ZV,  D*U,. (3.14) 

Lastly we use the substitutions (3.4)-(3.7) in the mean-motion equation (2.27) 
and balancing coefficients of A2, (m >, l ) ,  we obtain for m = 1 

(3.15) 
and for m = 2 that 

R-l(DD* - 2a) fl = ( 1/2r2) d(r2u1U,)/dr, 

R-1[(DD*-4~)f2-2alfl] = ( 1 / 2 r 2 ) d ( r 2 ( ~ 2 ~ 2 + 2 ~ , ~ 1 ) } / d r .  (3.16) 

The boundary conditions on the new functions given in (3.4)-(3.6) follow from 
(2.18) and are 

} (3.17) 
U, =Dun = u,, = Du,, = V, = u,, = f, = 0, 

when r=r , /d  and r = r , / d + l  ( n =  1 , 2  ,... ; m =  1 , 2  ,...). 

We may also obtain the equations for u,,, u,, (m > 1) by equating coefficients 
of A2m+nin (2.28) and (2.31) onusing (3.4)-(3.7) and the equations for f, (m > 2 )  
by equating coefficients of A2m in the mean-motion equation (2.27) using (3.4)- 
(3.7). With the boundary conditions (3.17) we determineu,, u,, u,,, vnl, f, and a, 
from (3.8), (3.9), (3.11), (3.12) and (3.15), andu,,, vnm,fm together with urn (m> 1 )  
from the higher-order equations. Note that from (3.16) we may determine f 2  
immediately a, is known. Fuller details of the equations for u,,, v,, and f, are 
given in the author's thesis (1961). 

4. Method of solution 
We may eliminate u1 between (3.2) and (3.3) to obtain 

[(OD* -A') (DD* - A2 - a)' - 4Ao h2R2(Ao + B0/r2)] UI = 0,  (4.1) 

where the boundary conditions on v1 are 

v1 = DD*u, = D(DD* - h2 - a)  v1 = 0, a t  r = r,/d and r = r,/d + 1.  (4.2) 

Equation (4.1) with the boundary conditions (4.2) gives the eigenvalues and the 
eigenfunction ul determined to within an arbitrary multiplicative factor. To make 
u1 definite we select that u1 for which u1 = 1 when r = r,/d + $. In  the event of an 
exceptional case with v1 = 0 when r = r,/d + 4 we make v1 definite by selecting 
that v1 for which the integral of vi from rl/d to r,/d + 1 is 1. 
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2Ao R u ~  = (DD* - A 2 -  a) 211. 
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The value of u1 is then given from (3.3) by 

(4.3) 

One may now determine u2 and v2 from (3.8) and (3.9) with n = 2. If we eliminate 
u2 between these we find that v2 satisfies 

[L1(2A) (DD*-4A2-2~)-8AoAR(Ao+Bo/r2)]v2 = $RL1(2A) (ulDv,-v,Du,) 

+TI], (4.4) 
U" U Uc 3U1U; u1 u l -  u;ui -2 - 11 - ~ 

r r r2 

where L1(2A) is as defined by (3.10) and an accent denotes differentiation with 
respect to r. The boundary conditions satisfied by v2 are 

v2 = DD*v, = D(DD* - 4A2- 2a) v2 = 0, a t  r = r,/d and r = rl/d + 1. (4.5) 

The value of u2 is then determined directly from 

2A0 Ru, = (DD* - 4A2 - 2a) v2 - +R{u, Dv, - V ,  Du,}. (4.6) 

In  fact u, and v, for n > 2 may be found successively from (3.8) and (3.9) since 
the right-hand sides of these equations for n = N ,  say, are determined by ui and vi 
fori  < N - 1 .  

Next we determinef, from equation (3.15) and the boundary conditions (3.17) 
with m = 1. We are now in a position to determine u,,, vll and a, from (3.11) and 
(3.12) with n = 1. From these we may eliminate ull and readily find that the 
important equation for v,, and a, is, using (4.3), 

[(DO* - A2) (DD* - h2 - 3 ~ ) ~  - 4A0 A2R2(Ao +Bo/r2)] vll 

= 2a,(DD* - h2) (DD* - A2 - 2a)  v1 + kll(r), (4.7) 
where we define 

i kll(r) = ki\)(r) + k O ( r ) ,  

k D ( r )  = (4A0A2R2/r)vlf1+R(DD*-A2) (DD*-A2-3a). ulD*f,, 

ki:)(r) = R(DD* - A2) (DD* - h2- 3a) hll(r)  + 2A0AR2g1,(r). 

(4.8) 

The boundary conditions to be satisfied by vll are 

(4.9) 1 vll = DD*v,, = D(DD*-A2-3~)vll-a,Dv1 = 0, 
at r = r,/d and r = rl /d  + 1. 

Havingfoundv,, and a,from (4.7) with (4.8) and (4.9) one may then determine ull 
directly from 

(DD*-A2-3a)vll-2AoRull = w,vl+Ru,D*fl+Rhl,(r). (4.10) 

(In (4.8) and (4.10) gll(r) andh,,(r) are asgiven by (3.13) and (3.14), respectively.) 
Equation (4.7) is a sixth-order differential equation for vll, and the right-hand 

side is known completely save for the value of the constant a,. To solve this 
consider first the case when a, = 0 for n 1, so that A(t) is proportional to cut. 
In  general we wish to find a solution for A which is convergent and which is small 
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at all times, and we expect to find such a solution for small values of CT. -f Thus 
taking g to be small we first solve (4.7) with a, = 0 that is 

[(DD*-A2) (DD*-h2- 3 ~ ) 2 - 4 A o h 2 R 2 ( A o + B O / ~ 2 ) ] ~ 1 1  = kll(r), (4.11) 

subject to the boundary conditions (4.9) with a, = 0, namely 

vll = DD*v,, = D(DD* - A2 - 30) ?Il1 = 0. (4.12) 

For small values of the square bracket on the left-hand side of (4.11) approxi- 
mates very closely to the operator of linear theory occurring in (4.1). Moreover, 
the boundary conditions (4.12) differ only by terms of order o' from the boundary 
conditions (4.2). Thus the dominant term in vll is probably a multiple of vl. 
Moreover, on examining (4.11) and the boundary conditions (4.12) one readily 
sees that in general this multiple will tend to infinity as c -+ 0. 

Thus we seek a solution of the form 

211, = g - l v y )  + vg) + O-vii) + . . . , (4.13) 

where viyl), ui;), v&), . . . , are bounded as r~ -+ 0. This method is due to Watson 
(1960). The numerical results of $35 and 7 indicate that vll will never have a 
multiple pole for any set of values of rl ,  r2 and m. Indeed one may show that if 
vl, had a double pole then (T would be purely imaginary on one side of the neutral 
curve. 

On the functions vp? we impose the following boundary conditions, which one 
can readily verify as being consistent with the boundary conditions on vll, as 
given in (4.12) above : 

virl' = DD* v11 (-1) = D(DD* - A2 - g) vlyl) = 0, (4.14) 

v11 ( s )  - - DD"v(") 11 - - D(DD* - A2 - g) ." - 2Dv8-l' = 0 (4.15) 

where (4.15) holds for all integral values of s > 0 and the boundaries at which 
(4.14) and (4.15) hold are at r = rl/d and r = rl/d + 1. 

The equations which are to be satisfied by the functions vg) are 

(4.16) 

(4.17) 

(4.18) 

L = (DD*-A2) (DD*-A2-a)2-4Aoh2R2(A0+Bo/r2), (4.19) 

(4.20) and 

These equations, with (4.13), are easily verified as being consistent with (4.11). 

where so far A is an arbitrary constant, so that the dominant term in vll is Avl/a. 
Now substitute Av, for v i ~ l )  in the right-hand side of (4.17) to give a sixth-order 

t It is suggested that since a often appears in linear association with A2 a suitable 
criterion is cr < h2, but this has not yet been proved. 

M = (DD* - A2) (DD* - A2 - 2 4 .  

The solution of (4.16) with the boundary conditions (4.14) is clearly &" = Rv 1, 
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differential equation for vi?), the solution of which requires A to have a special 
value. To solve this we first determine A from 

Lvj!' = 4AMv, + kll(r) ,  (4.21) 

the boundary conditions being given by (4.15) with s = 0. 

and it is readily shown that if we define 
We definez to be the adjoint differential operator (Ince 1956) to the operator L, 

D- = ( d / d r )  - ( l /r ) ,  (4.22) 

then E = (D-D - h2) (D-D - h2- a)2- 4A0 h2R2(Ao + Bo/r2). (4.23) 

The inhomogeneous boundary conditions on v\!) may be written, using (4.15) 
with s = 0 and v$rl) = Av,, as 

} (4.24) 
= DD*v$;) = D(DD* - h2- a) ~1:) - 2ADv1 = 0, 

when r = r,/d and r = r,/d+ 1. 

homogeneous adjoint boundary conditions, which are 
Now let 0 ( r ) t  be the unique solution of zf3 = 0 that satisfies the corresponding 

(4.25) 
when r = rl/d and r = r,/d + 1. 

Hence if we multiply (4.21) throughout by 0 and integrate from r = rl /d  to 
r = r,/d + 1 we obtain 

} 
0 = DO = (D-D - ~ 2 )  ( D - D - P -  a) e = 0,  

Thus, since = 0, equation (4.26) determines A and we may write 

Now that A is known the right-hand side of (4.21) is determined and we may 
solve this equation for ~1:). One method, after Watson (1960), is to define functions 
xz, x3,  x4, x5, xs which are solutions of L(x)  = 0, the corresponding homogeneous 
equation, so that v,, x2,  x3, x4, x5, xs are linearly independent solutions. Thus vi:) 
is a linear combination of these functions (apart from any particular integral of 
(4.21)), and by using (4.18) with s = 0 ,1 ,2 ,  . . . , we may determine vll completely 
when a, = a2 = ... = a, = 0. 

This solution corresponds to A(t)  being proportional to ed and does not con- 
verge as t -+ a. To find a solution which converges for all time we must first 
choose a suitable value for a, and then suitable values for a2, a3, . . ., a,, in turn. 

t The quantity B(r)/r satisfies the boundary conditions on the radial eigenfunction 7 4  

and the same equation, L[B(r)/r] = 0, as the azimuthal eigenfunction vl. Thus if vg is the 
general solution of Lv = 0 and err is the general solution of = 0, then 8, = rv, which is 
a circulation expression. 
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The solution, w,,, of (4.7) subject to the boundary conditions (4.9) consists of 
the solution of (4.11) just obtained together with, from (4.19) and (4.20), the 
solution of 

(4.28) 

subject to the boundary conditions (4.9). Clearly the solution of (4.28) subject 
to the boundary conditions (4.9) is - (a1/2a) w,. Thus the full solution of (4.7) is 

w,, = U-l(A-&al)v,+O(l), (4.29) 

and if we choose a, so that A - &al = 0 then wll will be bounded as a -+ 0. Thus to 
make the series for v, ( r , t )  converge as rapidly as possible, a, is determined by 
a, = 211, and thence 

w,, = w g  + C T w g  + . . . . (4.30) 

With a, and w,, thus determined, u,, follows from (4.10) and w,,, u,, are found 
from (3.11) and (3.12); moreoverf, may be found from (3.16). 

At this stage g12(r), h12(r) are known functions. One may readily show that w12 is 
expandable when a, = 0 in the same way as w,,, and that a, may be chosen to 
remove the simple pole in w12. Then u12 can be determined. Moreover wn2, un2 
follow successively (gn2, h,, being known when the equations for un2, wn2 are to be 
solved) andf,, after which w,,, u13 and a, can be similarly determined. We may 
proceed in this way successively to find the constants a, provided mv is very 
small. When ma is not small the equation for wlm is no longer ill-conditioned and 
the series expansion loses its accuracy. Thus for ma not small no particular value 
of a, will make the series for w(r, t )  converge more rapidly than any other value 
and we may set a, = 0 for all sufficiently large m. Proceeding in this way all the 
functions of r and the constants a, appearing in (3.7) may be found. 

Now we may determine to order (r the equilibrium amplitude by retaining only 
the first two terms on the right-hand side of equation (3.7), provided that w,, does 
not have a multiple pole. We have on this assumption that 

dA/dt = crA+a,A3, 

and the solution which satisfies A - Cent as A -+ 0 is 

A2 = Kge2Ut / (  1 - a, K e2ut), (4.31) 

where C2 = Kcr, their values depending upon the origin of t .  Hence to a first 
approximation the equilibrium amplitude A, is given by 

A: = -a/a,, (4.32) 

so that A: is of order a. According as a, > 0 or a, < 0,  we will have subcritical or 
supercritical disturbances which will decay from or amplify up to their equilibrium 
values respectively. The experimental work of Taylor (1936) and Donnelly (1958) 
indicates that only supercritical disturbances occur so that we expect a, < 0 when 
the outer cylinder is held a t  rest, and also when the cylinders rotate in the same 
or opposite directions. Experimental evidence suggests that A: is proportional 
to T - T, for small values of this quantity, but this sheds no light on the multi- 
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plicity of the pole in v,,.t Here T is the Taylor number defined in (5.2) below and 
T, its ‘critical’ value. However the numerical calculations of § $ 5  and 7 indicate 
that the limit as (T + 0 of the coefficient of A in (4.27) will be zero for at most 
a few discrete sets of values of Q,, Q2, rl and d. It is only in these unlikely cases 
that we need resort to a double- or higher-pole expansion in (4.13). In  such a 
case the functions &p+s) with s 2 0 must be defined so that they do not depend 
upon (T. 

5. The wide-gap problem with Q2 = 0, r2 = 2r, 

The most important properties one wishes to determine in the solution of the 
non-linear stability problem are the shape and strength of the Taylor vortices. 
Here we consider the particular case when the outer cylinder is at  rest and has 
a radius which is twice that of the inner cylinder. The solution we obtain is an 
exact solution of the Navier-Stokes equations under the limiting condition 
cr -+ 0, which implies that the Taylor number only slightly exceeds its critical 
value. In  fact this restriction is not as strong as might appear, since the analysis 
gives very good results for a surprisingly wide range of the Taylor number above 
this value. 

Using m = 0 and r2 = 2r, in (2.8) one obtains 

A 0 - 3 ,  --1 B - 4  0 - 3 9  (5.1) 

T 2 694R2. (5.2) 

[(DD* - h2) (DD* - h2 - ( T ) ~  + h2T($r-2 -A)] v1 = 0,  (5.3) 

v1 = DD*v, = D ( D D * - A ~ - ( T ) ~  = 0 at r = 1,2.  (5.4) 

and in this special problem we define a Taylor number by 

Using (5.1), (5.2) in (4.1) the linear stability problem is specified by 

with the boundary conditions from (4.2) as 

The shape of the vortices will depend on the Taylor number and we determine 
this shape in the limit as T - T, +- 0, where T, is the critical Taylor number. When 
T - T, is small, (T the amplification rate of the corresponding infinitesimal disturb- 
ances is also small, and so is the equilibrium amplitude of the vortices. Thus we 
content ourselves with finding the limiting form of the vortices as (T --f 0, as given 
by the limits as (T -+ 0 of u,, vl and u2, v2. These are sufficient to calculate the limit 
as CT -+ 0 of the constant a, from formula (4.27) and the relation a, = 2 h ,  pro- 
vided we also determine the limiting form as (T -+ 0 of the adjoint function 0. 

Experimental evidence supports the assumption that h may be fixed at the 
value A, which makes T a minimum when = 0. At a higher Taylor number, the 
value of h which makes (T a maximum is only slightly greater than A,, and the 
variation of (T with h is also only very small. Moreover, if the wavelength were to 
alter, the vortices would have to move axially and new ones would have to form 
a t  the ends of the cylinders. A fixed value of h avoids this difficulty. 

that T - T, is proportional to @, so that in all cases A: is proportional to  T - To. 
t For if u,, has a pole of order p 2 1 one may show that A or a, is of order al-9 and 
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We started by using a digital computer to determine A, T, together with the 
eigenfunction u1 and its derivatives in the limit as a -+ 0, using (5.3), (5.4) with 
c = 0 and T = T,. To do this we fixed h at some value and set vi(1) = 1, so that 
the boundary conditions become wl( 1)  = 0, u;( 1) = - 1 and uT( 1)  = h2+ 3. Then 
we used an iterative procedure which, starting with arbitrary values of T, up)( l),  
up)( l), converged to a set of these values which made ~ ~ ( 2 )  = 0 , 4 ( 2 )  + +v;(2) = 0 
and uF( 2 )  - h2v;( 2 )  - $ui( 2 )  = 0 on integrating across the gap between the 
cylinders. The value of h was then found which made T a minimum and the 
eigenfunction was normalized to make ul( 1.5) = 1. We found that T has a mini- 
mum value of T, = 33062 when h = 3.163, and we shall now fix h at this value. 

For convenience we now define 

U1 = 2Ao Ru,, Fl = 4A0 fl, 'uz = 4A0 v,, U z  E 8A: Ru,, (5.5) 

and determine the limiting forms of El,  Fl, G2, U2 and their derivatives as a + 0. 
To determine El put a = 0 in (4.3) and use (5.5) to obtain 

(5.6) 

which, since u1 and its derivatives are now known yields the values of U1 and its 
derivatives (with successive differentiations of (5.6) and use of (5.3) with c = 0 
and T = T,). The values of ul, U1 and their first three derivatives are to be found in 
table 1 which has been deposited with the Editor. t 

Next we found the limiting form of the adjoint function 0. By putting cr = 0 in 
(4.23) and using E0 = 0 with T = T,  we have 

- 
~1 = (DD" - A 2 )  ~ 1 ,  

[(D-D-h2)3+h2T,(ar-Z-~~)] I9 = 0; (5.7) 

19 = DO = (D-D-h2)219 = 0 a t  r = 1,2. (5 .8)  

the relevant boundary conditions, found from (4.25) are 

The magnitude of 8 is not important and for simplicity we choose 0"( 1) = 1. Then 
0 and its derivatives were found using the computer by integrating from r = 1 to 
r = 2. The quantities O"( l) ,  W)( 1) were chosen so that O(2)  = O'(2) = 0, while the 
third boundary condition was satisfied with an error of less than 1 part in lo5. 
The function 8 and its first three derivatives are to be found in table 2. 

Now we may determine the relationship between a and T in the limit as u -+ 0. 
The equation for u E ul(r; a) is (5.3) with the boundary conditions (5.4). Since a i s  
small let u = ul+a0+0(a2),  T = T,+cx+0(c2) where e is a constant to be 
determined and where now ul 5 u l ( r ;  0). To zero order in c the boundary condi- 
tions on ul, 0 are 

at r = 1,2, (5.9) I u1 = DD"v1 = D(DD*-h2)vl = 0, 
3 = DD*0 = D(DD* - h2) 8 - Dv, = 0, 

and the equation for 0 is 

[(DD" - h2)3 + h2T,($r-2-&)] 0 = 2(DD* - h2)2vl - ~ h ~ ( $ r - ~  -A) ul. (5.10) 

t Tables 1 to 11 inclusive have been lodged with the Editor of the Journal of Fluid 
Mechanics and may be consulted by readers on application to the Editor. Tables A and H 
given in the text summarize the more important results. 
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The unique value of E which permits (5.10) to have a solution was found using the 
theory of § 4; in particular the results (4.26), (4.27) are required in the special case 
2R = 1. We also need the special result 

which can be derived by integration by parts. Multiply (5.10) throughout by 
O(r; 0) and integrate over the gap between the cylinders. Using the boundary 
conditions (5.9), together with (5.7), (5.8), (5.11) we find that 

We evaluated the integrals in (5.12) on the computer and found 

6-l = 4.0645 x lop4 

so that G = 13.44( 1 - T,/T).T (5.13) 

Next we found Fl, which measures the distortion of the mean motion by the 
Reynolds stress. In (3.15) put G = 0 and use (5 .5 )  to obtain 

DD*Fl = D(Ul vl) + 2U1 vl/r, (5.14) 

with the boundary conditions Fl = 0 at  r = 1,2.  The computer was used to 
determine Fl and its derivative by integrating from r = 1 to r = 2. The quantity 
F;( 1) was chosen so that F1(2) = 0 and the function and its derivative are to be 
found in table 3. 

Next we found Z2 and its derivatives as G --f 0. We use (4.4), (5.1) and (5.5) with 
G = 0 to obtain 

for ease of computation we used (5.6) to rewrite the right-hand side of (5.15) in 
terms of vl. The appropriate boundary conditions obtained from (4.5) are 

Z2 = DD*;ij, = D(DD* - 4h2) 'u2 = 0 a t  r = 1,2 .  (5.16) 

Since the right-hand side of (5.15) is known, G2 and its derivatives were found by 
integrating from r = 1 to r = 2. A programme was written which, given arbitrary 
initial values of $'( l), ;Ij(ziv)( 1)  and %kv)( I), converged to a set of these values which 
made g2(2), Vg(2) + @&(2) and $(2) - $$(2) - 4h2$,(2) all zero. 

t This form of the relationship between CT and T is valid to first order in T - T,. More- 
over it will be seen later that the use of the form (5.13) to calculate & from (4.32) often 
yields a result in good agreement with experiment, even for ranges of T for which (5.13) is 
not valid. 
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with CT = 0 and (5.5) to obtain 
The last functionrequiredis U2 with CT = 0 and this is given directly from (4.6) 

Uz = (DD* - 4h2) z2 $- ("1 u; - V;U1). (5.17) 

From the knowledge of G2, v,, U1 and their derivatives and from successive 
differentials of (5.17) we also found the derivatives of U2.  The functions Z2, U2 and 
their first three derivatives are to be found in table 4. 

r 
1.00 
1.05 
1.10 
1-15 
1.20 

1.25 
1.30 
1.35 
1.40 
1.45 

1.50 
1.55 
1.60 
1.65 
1.70 

1.75 
1.80 
1.85 
1.90 
1.95 

2-00 

V1 

0~000 
0.175 
0.343 
0.503 
0.648 

0.775 
0.878 
0.954 
0.999 
1.015 

1.000 
0-958 
0.891 
0.805 
0.702 

0.589 
0.469 
0.348 
0.228 
0.112 

o*ooo 

10-13, 
0.000 

- 0.126 
- 0.428 
- 0.817 
- 1.221 

- 1.592 
- 1.896 
- 2.113 
- 2.234 
- 2.258 

- 2.192 
- 2.046 
- 1.836 
- 1.577 
- 1.288 

- 0.987 
- 0.693 
- 0.426 
- 0.206 
- 0.056 

0.000 

1 o2e Fl 
0.000 0.000 
0.114 0-894 
0-413 1.713 
0.837 2.397 
1.329 2.879 

1.838 3-109 
2.322 3.069 
2.742 2,779 
3.069 2.290 
3.282 1.675 

3.365 1.016 
3.316 0.391 
3.135 - 0.137 
2.833 - 0.526 
2-431 - 0.761 

1.953 - 0.845 
1.435 - 0.800 
0.921 - 0.660 
0.464 - 0.459 
0-131 - 0.232 

o*ooo 0.000 

- 
"2 

0.000 
- 0.212 
- 0.418 
- 0.607 
- 0.766 

- 0.885 
- 0.960 
- 0-991 
- 0.982 
- 0.940 

- 0.872 
- 0.785 
- 0.686 
- 0.583 
- 0.479 

- 0.379 
- 0-286 
- 0.202 
- 0.127 
- 0.060 

0.000 

1o-1ii2 
o*ooo 
0.272 
0.934 
1.803 
2.738 

3.626 
4.380 
4.942 
5.278 
5.382 

5.269 
4.965 
4.506 
3.931 
3.278 

2.582 
1.879 
1-208 
0.617 
0-178 

0.000 

TABLE A. Summary of results for the wide-gap problem r2 = 2r1, rn = 0 with 
~ ~ ( 1 . 5 )  = 1 and O"(1) = 1. 

We are now in a position to find the limiting value as (r + 0 of the constant a,. 
For convenience we define 

- - o,, z 8Aivl1, ull l6A;Rul1, Qll 16A,3R2gll, El1  3 8AiRh11, (5.18) 

(5.19) 

= 0 together with the formulae (4.8), (4.27), (5 .5 ) ,  (5.11), 

- and a1 5 8Aia1. 

Using 2R = a, and 
(5.18) and (5.19), and performing some integrations by parts, we have 
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where (3.13), (3.14), (5.1), (5 .5 )  and (5.18) yield 

353 

4h&, = ih2T, vl V2 r-l-  h2[3u, Bi + 6U; U2 + 5B, U2 r-l] + [Ti, U[ + 2Ui U i  
- U; c; - 2U; U2 + (2U, 21.; + U' , U' - u -; u -2) r-1+3U;U2r-2-44ulU2r-3], (5.21) 

and 

Evaluating the integrals in (5.20) we have 
4m,, = 42; G2 + 2U1 5;. + 2 4  Ti2 + v1 Ui + 3( 2B1 Z2 + v1 U 2 )  r-l. (5.22) 

Zl = - 132.47 and a,, = - 27.00. (5.23) 

(The latter value a,, is given here for later convenience and is the contribution 
to a, of the harmonic terms represented by the last integral on the right-hand side 
of (5.20),) Hence, as A: = - u/al, the square of the equilibrium amplitude of the 
vortices, found by using (5.13), (5.19) and (5.23), is given by 

A: = 0*09017(1- T,/T), (5.24) 

with the normalizing condition vl( 1.5) = 1. 
Having determined a,, we now show that the differential equation which 

governs the disturbance amplitude is in fact an energy-balance relation for the 
fundamental disturbance (u,, v,, w,). If we defineu',v', wr torepresent the velocity 
components of that part of the disturbance which has odd wave-numbers 
( A ,  3h, 5h, . . .), and uc, v", w" to represent the velocity components of that part of 
the disturbance which has even wave-numbers (2h, 4h, 6h, ...), then it can be 
shown from (2.21), (2.22) and (2.23) that 

- 1 ~ ~ ( ~ ' 2 + ~ r 2 + 5 r 2 ) r d r d r -  u ' ~ 1 1 + v ' ~ z l + ~ r ~ 3 1 ) r d r d z .  (5.25) 

In  (5.25) the integration ranges over one wavelength (27rlh) and between the 
R /I( 

(5.26) 

are the vorticity components, and x,,, x12, x3, are the 'odd' parts of x,, x2, x3 in 
(2.25) and (2.26), and the non-linear part of the left-hand side of (2.23); thus 

xll = r-1 a(2rururr)/ar+ a(UrWN + u N W r ) / a Z  - 2vrvff/r, (5.27) 

xZl = r--2 a(r-2dvrr + r-2unvr)/8r + a(vrwrr + vf'wr)/az, (5.28) 

x3, = UraWN/ar +uffawr/ar + a(wfwff)/az. (5.29) 

Equation (5.25) states that the rate of increase of energy of the 'odd' part of 
the disturbance (u', of ,  w') equals the rate of transfer of energy from the mean 
motion, less the rate of dissipation of energy, less the rate of transfer of energy 
from the 'odd' to the 'even' (un, vn, w")  part of the disturbance. By substituting 
(2.14), (2.15), (2.16) and also (3.4)' (3.5), (3.6) in (5.25) one obtains 

4 dA2/dt = uA-2 + ( k ,  + k ,  + Ic,) A4, (5.30) 

where some terms of order u in the coefficient of A4 have been ignored (together 
with higher powers of A2). 

23 Fluid Mech. 14 
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From (5.25) it is readily shown that 

where 

(5.31) 

1 - - -,- 2u,u, U, E; + ii; 2;: - 2U; U, +- (2u,u; -ulu2) + r dr] , (5.32) 
r 

k3 = - (1/8Ag ko) 2, (5.33) 

(5.34) 

and 2 is an integral whose integrand is a function of El, v,, Ell and Ell. 
From the above expressions for k,, k,, k, which are evaluated with CT = 0 it is 

clear from a comparison of (3.7) and (5.30) that the limit as CT -+ 0 of a, is k, + k, + k, 
so that this sum is knownfrom (5.23). As a consistency check (5.30) with the same 
expressions for k,, k,, k, may also be obtained directly from (3.7) and (3.11), 
(3.12) with n = 1. This is done by multiplying (3.12, n = 1) by Rw,, multiplying 
(3.11, n = 1) by 2A, ARzE,, subtracting and integrating from r = 1 to r = 2. 

Now 8Ag k, and 8 4  k, may be evaluated directly from (5.31), (5.32) and, since 
a, = k, + k, + k,, we may use (5.23) to determine k,. Since the equilibrium ampli- 
tude depends so strongly on the value of al, it is instructive to investigate the 
signs and relative magnitudes of k,, k, and k,. These quantities represent the 
following three physical processes: (i) the distortion of the mean motion (k,); 
(ii) the generation of the harmonic of the fundamental (k,); (iii) t,he distortion of 
the fundamental, with regard to its dependence on the radial co-ordinate (k,). 
A schematic diagram of the energy supply to and from the fundamental and the 
harmonic to order A4 is shown in figure 1. We found that 

8Agk1 = - 113.22, 8Agk2 = - 16.66, 8Agk3 = - 2.59, (5.35) 

and also 8A; k,, = - 10.34 where k,, is the contribution of the harmonic to k,. 
As expected k, is negative; it represents flow of energy to the disturbance from 
the mean motion. Also k, is negative, though much smaller than k,, so that the 
harmonic extracts energy from the fundamental. Now k3/k, is very small, so 
that the distortion of the fundamental has little effect on the equilibrium ampli- 
tude. However we may write k, = k31+k32, where k,, is the effect of the mean 
motion on the distortion of the fundamental, so it is clear from (5.35) that the 
two effects tending to distort the fundamental are separately appreciable. By 
considering anequation similar to (5.25) for the 'even' part of the disturbance and 
evaluating some integrals we may show that the harmonic actually extracts twice 
as much energy from the mean motion as is supplied to it by the fundamental, all 
being lost in viscous dissipation. 

It is interesting to note that in the small-gap problem described in $ 5  6 and 7, 
the mechanics is somewhat different. 
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Comparison with experiment for r2 = 2r1, m = 0 
Now that the amplitude of the vortices is known, together with the distortion 
of the mean motion, we may calculate the torque required to maintain the 
motion. This is greater than the laminar value because of the vortices, and may 
be determined by experimental methods. 

FIGURE 1. Energy supply to and from the fundamental and harmonic to order A4. 
(MM = mean motion, F = fundamental, H = harmonic, D = dissipation.) 

We compare our theory with the experimental results given in Table 2 of 
Donnelly & Simon (1360). The torque on the inner cylinder (which is the same as 
that on the outer cylinder when the motion is steady) may be written 

where 

(5.36) 

(5.37) 

h is the length of the cylinder and 6is a constant given, ignoring terms of O(a) ,  by 

S = -TcF;(1)/2a1e = 0.8281. (5.38) 

We may now rewrite (5.36) and (5.37) in the form 

Q = aSZ,~+bfz, (fz, > QJ, (5.39) 

where a = - 9n(rl + r2)  hpv36T,/64d3, 
(5.40) 

Donnelly used cylinders 5cm long with radii of 1.0 and 2.0cm and fluid with 
p = 0*8404g~m-~ and v = 0.1226 cm2sec-l. Thus (5.38) and (5.40) give 

a = -280.8 and b = 12.65. (5.41) 
23-2 
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The curve G = - 28O-8CQ1 + 12.65Q1 is drawn in figure 2, together with experi- 
mental results taken from Table 2 on p. 406 of Donnelly & Simon (1960). For 
comparison is shown a dashed line given by G = - 333-7Qc1 + 13.52Q1 which is 
obtained by using Stuart’s (1958) type of energy balance method. Both these 
curves give very good agreement with the experimental results for a far wider 
range of the Taylor number than that over which one would expect the per- 
turbation theory to be useful. 

190 - 

170 - 

150 - 

G 130 - 

110 - 

90 - 

70 - 

I I I I I I I 
70 80 90 100 110 120 130 

R 
FIGURE 2. Comparison of theories for the wide-gap problem, r2 = 2r,, m = 0, with the 
experimental results of Donnelly (1958). G, torque vus R, Reynolds number. x , Experi- 
ment, Donnelly & Simon (1960) ; -, present theory; ---, Stuart’s appr0ximat.e method; 
-. -, Batchelor’s law. 

An additional curve of dots and dashes given by G = &R1.5 is included for the 
higher Reynolds numbers. This curve satisfies the rule G -  given by 
Batchelor in an appendix to Donnelly & Simon’s paper, taking a base point at  
R = 110, G = 154. Although this range of R is probably not quite high enough for 
Batchelor’s theory to apply, it fares well with the experimental data and matches 
nicely with the present perturbation theory. 

6. The small-gap problem 
Here we consider the simplified problem when the gap between the cylinders 

d/r ,  -+ 0. Again we determine the shape and strength of the vortices when the 
amplification rate r~ is small (probably compared with h2), so that the Taylor 
number is slightly above its critical value. Again the analysis gives close agree- 
ment with experimental results over a wider range of the Taylor number than 
we expect. 

We transform the independent variable measuring distance in the radial 
direction by setting x = y - Id-,( 2 Tl+T2)’  (6.1) 
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so that x = - + and 4 respectively at the inner and outer cylinders. Using this 
transformation in (4.1) with (2.8) and taking the limit as d/rl -+ 0, we have for the 
linear stability problem 

[(D2-A~)(D2-A2-a)2+A2T(1-2x(1-mm)/(l+m)}]v1 = 0, (6.2) 

v1 = D2vl = D(D2-A2-a)wl = 0 at x = *+, (6.3) 

T (1 - m2) rl d3/v2, (6.4) 

with the boundary conditions from (4.2) as 

where now D = d/dx .  The Taylor number is defined by 

and it is important to note that, since d/rl  is small, the Reynolds number will be 
large; also A,  = -+(1 - m )  from (2.8) with d/rl -+ 0. 

As in 5 5 it  is sufficient to determine the limiting forms as a -+ 0 of ul, v1 and 
u2, v2, and of the adjoint function 8. Also we again fix the wave-number A at the 
value A, which makes T a minimum when a = 0. The determination of A, T, is 
easily accomplished by using either the method of Di Prima (1961) (see, for ex- 
ample, Q 7.1) or by using a computer integrating routine (see, for example, § 7.2). 
However in all cases we use an integrating routine to determine the eigenfunc- 
tion vl and its derivatives in the limit as CT -+ 0. This is done by straightforward 
integration and one merely ensures that with v;( - 3) = 1, say, then up)( - +), 
vp)( - 9) are chosen to make vl(+) = w;(+) = 0 where now a dash denotes differen- 
tiation with respect to x. We then normalize to make v,(O) = 1, and the third 
boundary condition which should be automatically satisfied gives a check on the 
accuracy of the eigenvalues and the integration routine. 

For convenience we again define Ul, F,, ‘uz and U z  by (5.5), though now 
A ,  = - +( 1 - m), and determine the limiting forms of these functions as d/rl  + 0 
and as CT -+ 0. To find El take these limits in (4.3) and use (5.5) to obtain 

u, = ( 0 2 -  A2) vl, (6-5) 

which, with successive differentials, yields the values of El and its derivatives 
since v1 and its derivatives are known. 

Next we find the adjoint function 8 by taking the limits d/rl  -+ 0 and a -+ 0 in 
(4.23) and using = 0 so that 

[ ( o 2 - ~ 2 ) 3 + ~ z ~ , { i - 2 ~ ( i - m ) / ( i + m ) ) ] e  = 0. (6.6) 

This in fact is the same equation as is satisfied by v1 (CT + 0) ;  the boundary 
conditions, found from (4.25), are 

8 =DO = ( 0 2 - A 2 ) 2 8  = 0 at  x = ++. (6.7) 

In  5 7.1 where the special case m + 1 is considered then 8 EZ U1, but for other 
values of m this is not so, although (6.7) are the boundary conditions on U1 for any 
value of m. We fix the magnitude of 8 by choosing 8”( - 6) = 1.  Then 8 and its 
derivatives are found by integration from x = -9 to x = 4. The quantities 
8’”( - +), 8Cv)( - 4) are chosen so that 8(+) = el(+) = 0, the third boundary condition 
again being automatically satisfied. 
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Now we may determine the relationship between a and T in the limit as a --f 0. 
When a is small w = wl(x; a) satisfies (6.2) with the boundary conditions (6.3). 
Since (T is small let w = w,+aO+O(a2) and T = T,+ac+O(+), where now 
v1 = v,(z; 0 )  and c is a constant to be determined. This is done in exactly the same 
way as in 0 5, by linearizing in u, multiplying the equation for 0 by O(z; 0 )  and 
integrating over the gap between the cylinders. With use of (5.11) with D* and 
D- both replaced by D we find that 

This method gave the same result as that of the special case m -+ 1 in § 7.1 
obtained by the method of Di Prima with a discrepancy of less than 1 part in lo5. 

Next we find F,, which measures the distortion of the mean motion by the 
Reynolds stress. In  (3.15) take the two limits and use (5.5) to obtain 

D2Fl = D(U,V,), (6.9) 

with the boundary conditions F, = 0 at z = -t- 4. Thus 

and, using (6.5) for ease of computation, F, and its derivative are found by inte- 
gration from x = - 8. 

Now we determine Z, and its derivatives when dlr,  -+ 0 and a -+ 0. Use (5.5) 
with (4.4), take these limits in turn (terms like uf can be ignored compared with 
v: because A,  R is very large) to obtain 

[(D2 - 4h2)3 + 4h2c{ 1 - 22( 1 - W Z ) / (  1 + m)]] V2 

= (D2-4A2)2(~l~;-~~~1)+2(U1U;N-U~U~)+4h2T,((1-m)/(l +wz))w~,.  (6.10) 

For ease of computation the right-hand side of (6.10) may be rewritten using (6.5) 
in terms of w,. The boundary conditions found from (4.5) are 

G, = D2V, = D(D2 - 4h2) Z, = 0 at x = k 4. (6.11) 

Now %2 and its derivatives are found by integration from x = -4 to x = +. 
A programme was written which, given arbitrary initial values of @;(-a), 
VP)( - +), VLv)( - Q), converged to a set of these values which made V,(Q), Vg(+) 
and V$(+) - 4h2VL(+) all zero. The last function we require is the limit as d/r, -+ 0 
and (T -+ 0 of 5, and this is given by taking these limits in (4.6) and using (5.5) to 

(6.12) 
obtain 

From the knowledge of G,, U,, w1 and their derivatives and from successive 
differentials of (6.12) we may also find the derivatives of 5,. 

We may now find the limiting value as u + 0 of the constant a,. For simplicity 
and instructiveness we will not use the theory of 3 4 but will derive the result from 
the work of § 3. First define €unctions Gll, GI,. gl1, fE,, and a, by (5.18) and (5.19). 

Ti2 = (D2 - 4A2) G2 + (0, U; - V;  GI). 
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Then take thelimits as d/r ,  + 0 and cr + 0 of (3.11, n = l) ,  ( 3 . 1 2 ,  n = 1) and use 
( 5 4 ,  (5.18), (5.19) to obtain 

( 0 2  - A2)2U11 + PT,{ 1 - 2 4  1 - m)/(  1 + m)} @,, 

= Zl(D2 - A’) U, + 2A2Tc{(1 - m)/( l  +m)> v1Fl + hg,,, (6.13) 

and ( 0 2  - A2) Zll - Ell = a, w, + U1F; + Ell, (6.14) 

wherenowg,,,E,,,obtainedfrom (3.13) and (3.14), andusing (5.5) and (5.18) are 
given by 

4A&, = [U, Ug + 2U; U; -;El; U; - 2Upz2]  

- 3 A 2 [ U l U ~ + 2 i i ~ U , ] + 4 A 2 T , { ( 1  -m) / ( l  +m)}v,@,, (6.15) 

(6.16) and 

The boundary conditions on U,,, ZI1 are 
m,, = [U; E2 + $Ul v;l + 3v; u2 + av, U;] . 

U,, = DU,, = @,, = 0 a t  x = 4 4; (6.17) 

the full conditions on each function may be found from (6.13), (6.14). The main 
reason for using (5.19) is, as we shall find in Q 7 ,  that a, depends mainly upon m 
through the factor A: in (5.19) and is relatively little affected by m in the equa- 
tions which determine a,. 

Nowoperatewith ( D 2 - A 2 ) 2 0 n ( 6 . 1 4 )  andeliminateU,, byusing (6.13). Multiply 
the resulting equation by 8 and integrate from x = - Q to x = 8. Then, to simplify, 
use (6.3) with CT = 0 and (6.9) and perform some integrations by parts to obtain 

For a given value of m we may evaluate the integrals in (6.18) and thus determine 
a,. Thus, to first order in G, we know how the vortices grow together with their 
equilibrium amplitude, since A: = -u/al. Thus, using (6.8) and (5.19), we have 

A: = - (8A8T,/m1) (1 -T, /T) .  (6.19) 

Numerical results suggest that, at least for m 2 0, the variation of a, with m is 
small; moreover, since the variation of T, and e is also small, it is clear that A ,  is 
almost proportional to  (1 -m) for 0 ,< m < 1 .  (See 3 8 for an approximate 
formula for A: when 0 ,< m < 1.) Another noteworthy point is that the contribu- 
tion to a, due to the harmonic terms represented by the last integral on the right- 
hand side of (6.18) is unlikely to be more than 2%for 0 < m < 1. Thus without 
determining the harmonic functions one can still obtain the value of a, with an 
error of less than 2 yo. 

Having determined a, we may again show, in a manner identical to that 
described in Q 5, that the differential equation which governs the disturbance 
amplitude is in fact an energy-balance relation for the fundamental disturbance 
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(u,, v,, w,). We again denote the ‘odd’ part of the disturbance by (u’, v’, w‘) and 
the ‘even’ part by (u“, v”, wff). Both u’, w’ are of order ( A ,  R)-l v’ and for a fixed 
value of m =# 1 i t  is readily shown using (6.3) that A,, R may be made arbitrarily 
large by making dlr, sufficiently small. We suppose this condition to be satisfied 
so that it is sufficient to consider only the energy associated with v’, the azimuthal 
component of the disturbance. Hence we multiply (2.22) by v’ and integrate over 
the space between the cylinders and over one wavelength (2rlh) to obtain 

i a  av  
- R -JJ+(v”) at dr dz = JJ( - a%’) - ar dr dx - (6.20) 

where c, 5‘ are given by (5.26) and xZl by (5.28). In  obtaining (6.20) the factor r 
has been removed throughout and G/r has been ignored compared with aG/ar. 
In  a similar manner to that described in $5  we may now, using x as the inde- 
pendent variable, show that 

(6.21) 

(6.22) 

(6.23) 
1 t  

k - - -s (vlEll - ii,v,,) dx, 
3 -  8A$k,  -4 

(6.24) 
B 

k, = I-, v: dx. 

A consistency check that a, = k ,  + k ,  + k, is readily obtained by using (6.14). 
This is done by multiplying (6.14) throughout by v1 and integrating from 
x = -1 to 2 = 1. 

Now 8Aik, ,  8 A $ k ,  may be evaluated directly from (6.21), (6.22) and, since 
a, = k ,+k ,+k , ,  we may use (5.19), (6.18) to determine 8A$k,.  The signs and 
relative magnitudes of k,, k,  and k, in this special small-gap problem differ 
markedly from the wide-gap problem. The numerical results of $57.1, 7.2 
indicate that, for all values of m, k, is negative, again representing flow of energy 
to the disturbance from the mean motion. In  the limit as m + 1, it  is found that 
k,/k,  is approximately 0.0073 and, when m = 0, k,/k,  is approximately - 0.0003; 
hence k, may be positive or negative but it seems that k,/k, is always small so 
that this effect is relatively unimportant. Moreover, in the limit as m + 1, k,/k, 
is approximately - 0.34; and, when m = 0, k,/k,  is approximately - 0.38. Thus it 
seems that k, is probably positive for all values of m and the distortion of the 
fundamental is important and tends to increase the equilibrium amplitude. 
Using (6.18), (6.21) and (6.22) one can also show that the contribution (k,,) to k,  
from the harmonic is very small, so that, as a whole, the contribution to a, due to 
the harmonic is small (less than 2 yo for all values of m). 

Although the harmonic only plays a minor role it does play an interesting one. 
The work of 3 7.1 indicates that for values of m near 1 the harmonic derives all its 
energy from the fundamental as we might expect intuitively. About 75 yo of this 
is lost by viscous dissipation and the rest is transferred by the harmonic back into 

where 

2 2 
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the mean motion. However, the work of 0 7.2 indicates that for values of m near 0,  
the harmonic derives its energy from the mean motion, about 0.3% of this 
energy is transferred to the fundamental and therest is lost by viscous dissipation. 
Thus in these cases, although the harmonic cannot exist without the influence of 
the fundamental, the latter plays the role of a ‘catalyst ’. 

7.1. Results for the small-gap problem when m -+ 1 
Here we give the numerical results of the small-gap problem discussed in 3 6 

when m -+ 1 from below. This means that the cylinders rotate with nearly the 
same angular speeds. 

Setting m = 1 in (6.2), the equation for v1 is 

[(P - A’) (D2 - h2 - v)Z + h2T] v1 = 0,  (7.1.1) 

the boundary conditions being (6.3). As a consequence of the constancy of the 
coefficients of (7.1.1) g1 may be taken to be an even function, since it is known that 
instability corresponding to the odd modes only occurs at much higher Taylor 
numbers than those considered here. The eigenvalues A, T, and the relationship 
between v and T - T, were obtained by the method of Di Prima which gave the 
following transcendental equation for T as a function of hZ and V, that is 

Thus the neutral curve, obtained by setting a = 0 in (7.1.2) is given by 

(2n-1)2An 
p3-- = 0, 

n=l A, - h2T 
(7.1.3) 

which series converges like (2n - 1)-2. However, with an error of less than 1 part 
in los, we write (7.1.3) in the form 

and using the computer this gave a minimum value of T = T, = 1707.77 when 
h = 3-12, in good agreement with the value obtained by Pellew & Southwell 
(1940). Thus we fix h to be 3.12 supposing that the basic disturbance has this 
wave-number. 

From (7.1.2) it may be shown that, with an error of less than 1 part in lo5, the 
relation in the limit as v -+ 0 between a and T is a G  = (1 - T,/T) H where G, H 
may be evaluated from 

and (7.1.6) 

the values obtained being G = 3.0450 x 10-4 and H = 3.9613 x so that 

(T = 13.01(1 -T,/T). (7.1.7) 
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Since vl is an even function then v,(O) = 1, v;(O) = vY(0) = vp)(O) = 0 and it 
was only necessary to  integrate from x = 0 to x = + to make v,(+) = v;(*) = 0. 
From (6.5) U1 is clearly also an even function and by operating on (7.1.1) with 
(D2 - h2) i t  follows that U1 satisfies the same equation as vl. Hence 5, was found, 
together with its derivatives in the same way as v1 and its derivatives were found, 
and (6.5) was used as a check on the results. Values of vl, iil and their first three 
derivatives are to be found in table 5. 

From (6.6) with m = 1 and from (6.7) it is clear that 6 -= U, so that, for m = 1, 
El is the adjoint function. Thus setting 6 = El in (6.8) withm = 1 andevaluating 
the integrals, we obtained a check on (7.1.7). 

From (6.9) the function F, is clearly odd so that 

(7.1.8) 

the function and its derivative are to be found in table 6. 
Next we determined V z  and its derivatives from (6.10) with m = 1, from which 

it is evident that V ,  is an odd function. Thus V,(O) = Vi(0) = VP)(O) = 0 and we 
integrated from x = 0 to x = i choosing V h ( O ) ,  V:(O), Vp)(O) so as to make 

= V i ( + )  = V:(+) - 4h2Eh(+) = 0. In  general when m $: 1 the sixth-order 
differential equation for G2 is rather complicated which is why we normally use 
(6.12). However, when m = 1 it is readily shown that G, may be found directly 
from 

[ (D2 - 4h2)3 + 4h2c] U2 = 6U, E p )  - 2E' 1 1  ?PV) - 4U;ET + h2( - 165, Ur + 16U; U;). 
(7.1.9) 

Thus U, is also odd and we found E2 by integrating from x = 0 to x = + and 
choosing Ub(O), i i:(O),  $')(O) so as to make Z2(*) = i&(Q) = Up)(&) - 8h2Ui(+) = 0. 
The functions V 2 ,  U2 and their first three derivatives are to be found in table 7. 
These results were found to check with (6.12) on using values given in table 5. 

Wenow find G,from (6.18) with 0 = Gland withm = 1 in (6.15) and (6.18). We 
find that - 

a, = - 85.39, ( 7.1.10) 

where the contribution to CC, due to the harmonic, and represented by the last 
integral on the right-hand side of (6.18), is - 1-33. Thus, as mentioned in 4 6, we 
see that the contribution to 8, due to the harmonic is less than 2 yo. Hence, using 
A: = -r/a,, with (5.19) and (7.1.7), it  follows that for values of m near 1 

& = 0.3047(1-m)2(1 -T,/T) (m -+ l), (7.1.11) 

with the normalizing condition vl( 0) = 1. 

in 3 6 and we find that 
We may also determine the contributions to G, from k,, k, and k, as mentioned 

8Aik1 = -127.11, 8Aik2 = -0.92, 8Aik3 = 42.64. (7.1.12) 

These results confirm the remarks of 4 6 that, for m-t 1, k, is negative, that k2/k ,  
is small and that k,/k, = - 0.336 is quite large and negative. By considering an 
equation similar to (6.20) for the 'even' part of the disturbance and evaluating 
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some integrals we may show that about 75% of the energy supplied to the 
harmonic by the fundamental is lost in viscous dissipation and the rest is fed into 
the mean motion. 

7.2. Results for the small-gap problem when m = 0 

m = 0. Setting m = 0 and CT = 0 in (6.20) the equation for v1 is 
Here we give the detailed numerical results of the small-gap problem when 

[(P- A 9 3  -t h2T,( 1 - 2x)] v1 = 0, (7.2.1) 

so that the operator no longer has constant coefficients. The boundary conditions 
from (6.3) with CT = 0 are 

v1 = D ~ v ,  = 0 ( 0 2 - h 2 ) v l  = 0 at x = &&. (7.2.2) 

Unlike the case m -+ 1, V ,  is not ‘even’; but we shall see, however, that the ‘odd’ 
part is relatively small. 

To determine the eigenvalues a programme was written which, given a value 
of h together with arbitraryvalues of T ,  vp)(&) and@)( - &) (andwithv;( - &) = 1 
specified), converged to a set of these three quantities which made 

vl(&) = ?I;(&) = ?I?($) -h2v;(&) = 0 

when (7.2.1) was integrated from x = - &to x = 8. This gave a plot of the neutral 
curve and the programme also selected the value of h which made T a minimum. 
The values obtained were h = 3.13 and T = T, = 1694.95. At the same time v1 
and its derivatives were also found, these were then normalized so that v,(O) = 1. 
Then U1 and its derivatives were found from (6.5) and its differentials. The values 
of ul, U, and their first three derivatives are to be found in table 8. 

Next we found the adjoint function 8 from (6.6) with m = 0 and from the 
boundary conditions (6.7). This was done as explained in 5 6, and 0 and its first 
three derivatives are to be found in table 9. The relationship between Q and T in 
the limit as Q -+ 0 was then found from (6.8) with m = 0,  and evaluating the 
integrals we obtained 

CT = 13.10( 1 - T,/T). (7.2.3) 

The function Fl and its derivative were then found as indicated in 5 6 and these 
are to be found in table 10. 

Hence we then found F2 and its derivatives from (6.10) with m = 0, and ‘il, 
together with its derivatives from (6.12) as indicated in 5 6. These functions and 
their first three derivatives are to be found in table 11. 

Then Z, was found from (6.18) with Sll given by (6.15) with m = 0 and %,, given 
by (6.16). Evaluating the integrals in (6.18) we obtained 

Z, = -80.44, ( 7.2.4) 

where the contribution (al2) to Z, due to the harmonic terms represented by the 
last integral on the right-hand side of (6.18) was - 1.03. Thus, as in the case m -+ 1, 
the contribution to Z, due to the harmonic when m = 0 is again less than 2 yo. 
Now using A: = -v/a1, together with (5.19) and (7.2.3), it follows that 

A: = 0.3257( 1 - T,/T) (m = 0)  (7.2.5) 
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with the normalizing condition v,(O) = 1. The contributions of k,, k,, k,  to 5, are 
now found as indicated in 3 6 and 

8A: k, = - 129.33, 8A: k, = 0.04, 8A: k, = 48-85. (7.2.6) 

These results are similar to those of the case m -+ 1 in that k, is negative, k,/k, is 
very small and k,/k, is quite large and positive so that as before the distortion of 
the fundamental tends to increase the equilibrium amplitude. Unlike the case 
m -+ 1, however, k,  is now positive which means that energy flows from the 
harmonic to the fundamental. By considering an energy equation similar to 
(6.20) for the ‘even’ part of the disturbance we may show that the harmonic 
extracts energy from the mean motion; over 99 % of this energy is lost in viscous 
dissipation and the rest is that which is transferred to the fundamental. 
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0.000 
0.468 
0.914 
1.295 
1.557 

1.654 
1.559 
1-270 
0.817 
0.253 

- 0.353 
- 0.928 
- 1.404 
- 1.730 
- 1.880 

- 1.845 
- 1.654 
- 1.331 
- 0.922 
- 0.468 

0.000 

- 
v!2 

0.000 
-0.138 
- 0.279 
- 0.417 
- 0.542 

- 0.644 
-0.718 
- 0.761 
- 0.773 
- 0.756 

- 0.714 
- 0.653 
- 0.579 
- 0.497 
- 0.411 

- 0.327 
- 0.248 
- 0.176 
-0.112 
- 0.054 

0~000 

LO-1D2 

0.000 
0.144 
0.514 
1.035 
1.641 

2.271 
2.869 
3.387 
3.789 
4.048 

4.151 
4.095 
3.887 
3-542 
3.078 

2.521 
1,901 
1.262 
0.663 
0,197 

o*ooo 
TABLE B. Summary of results for the small-gap problem, m = 0, with 

w l ( 0 )  = 1 and /3”( -0.5) = 1. 

Comparison with experiment for m = 0 

Now that the amplitude of the velocity distribution is known, together with the 
distortion of the mean motion, we may calculate the torque required to maintain 
the motion. 

Taylor (1936) carried out experiments with cylinders 84.4cm long, the 
cylinders havin.g radii of 3.94 and 4.05cm. In  figure 3, G denotes the torque 
measured in g cm2 sec-2 units, and N the angular speed measured in units of 
rev. sec-l. The broken line corresponds to the theory of Stuart (1958) but modified 
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to include the terms of O(d/r,)  in the ‘laminar’ torque. Both curves give good 
agreement with the experimental results for a fairly wide range of the Taylor 
number above the critical value. 

log,, W l v )  
FIGURE 3. Comparison of theories for the small-gap problem, m = 0, with the experi- 
mental results of Taylor (1936). x ,  Experiment, Taylor (1936); -, present theory; 
_ _ -  , Stuart’s approximate method. 

R 
FIGURE 4. Comparison of theories for the small-gap problem, m = 0, with the experimental 
results of Donnelly (1958). G, torque vs R, Reynolds number. x , Experiment, Donnelly & 
Simon (1960); -, present theory; ---, Stuart’s approximate method. 

Finally we compare our theory with the experimental results given in Table 1 
of Donnelly & Simon (1960). The torque on the inner cylinder is given by (5.36) 
and (5.37) where now 6 = - T,F;( - +)/2a, E = 1.528. (7.2.7) 
Donnelly used cylinders 5 cm long with radii of 1.9 and 2.0 cm and fluid with 
p = 1*585g~rn-~  and v = 5.796 x 10-3cmzsee-1. Rewriting (5.36) and (5.37) in 
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the form (5.39) and ignoring terms in the coefficient of S which are O(d/rl) ,  we 
obtained 

G = - 906.6Qi1 + 51.64Q1. (7.2.8) 

Before comparing with experiment we adjusted (7.2.8) so that, using (7.11) of 
Taylor (1923), terms of O(d/r,) were included in the determination of T,. Such 
terms were not however incorporated in the non-linear effects so that S was not 
adjusted. 

The bold line in figure 4 compares the theory with Donnelly’s experimental 
results, and the broken line represents Stuart’s theory (S = 1.447), modified to 
include terms of O(d/r l )  in the ‘laminar’ torque and also in T,. Both curves give 
good agreement with experiment over the range of the Taylor number above the 
critical value for which we expect our perturbation theory to be valid. 

8. Discussion of the results 
The results of the wide-gap problem of $ 5  with r2 = 2r1 and m = 0 clearly 

indicate that the theory presented in this paper gives very close agreement with 
experimental results over the range of (T, small compared with h2, for which we 
expect the theory to be valid. We suggest that over the corresponding ranges of 
(T for different values of r2/r1 and m this will also be true. In  Q 5 we also found that 
the theory agrees with experiment for much larger values of (T than we expect. 
Whether this will be true for all wide-gap problems is not certain. It also seems 
probable that for most wide-gap problems the generation of the harmonic 
will affect the equilibrium amplitude more than the distortion of the funda- 
mental. 

The results of the small-gap problems of $5 7.1 and 7.2 also indicate that over 
the range of validity of the perturbation theory accurate agreement is obtained 
with experiment. That such good agreement is not obtained for larger values of 
(T is probably due to non-axisymmetric disturbances which, when rl/r2 = 0.95, 
have been observed experimentally by Donnelly (private communication) at  
about R = l-lR,. (Related observations have also been obtained by Coles 1960.) 
These will presumably contribute to the torque. However in the wide-gap 
problem of $ 5 the experiments of Donnelly & Fultz (1960) indicated that non- 
axisymmetric disturbances were not noticeable when R < 5Rc. We note that 
when the gap is small the distortion of the fundamental affects the equilibrium 
amplitude more than the generation of the harmonic, in contrast to the wide-gap 
problem. 

The results of $ Q  7.1 and 7.2 and an analysis of the terms in equation (6.18) 
enables us to propose the following approximate formulae valid for 0 6 m < 1. 
Omitting the second term on the right-hand side of (6.18) gives -al = 85.28 
which is almost the same as the value 85-39 given in (7.1.10) when m = 1 and this 
term is zero. Thus we may suppose that the variation of a, with m is mainly due to 
this term which varies like (1 - m)2/( 1 + so that if A ,  B are constants we set 
a, = A +B(1 - w ~ ) ~ / ( l  + w ~ ) ~ .  Fitting this with the results for m = 1, m = 0 we 
obtain, with a probable error of less than 1%, that 

(8.1) 
- a, = -85-4+5.0(1-m)2/(1+m)2 (0  < m < 1). 



The growth of Taylor vortices 367 

An examination of (6 .8 )  with use of the results for m = 1, m = 0 also indicates 
with about the same error that 

TJe = 13-0 + 0-1( 1 -m), / (  1 +m), (0  < m < 1 ) .  (8 .2 )  

Hence using (6.19) with (7 .2 )  and (7 .3 )  we propose that 

A: = 0 ~ 3 0 5 [ 1 + 0 ~ 0 6 7 ( 1 - m ) 2 / ( 1 + m ) 2 ] ( 1 - ~ / T )  ( 0  6 m < 1) .  (8 .3 )  

The value of T, to use in (8 .3 )  may be obtained from the Taylor formula, written 
in a slightly different form, namely 

T, = 1708-13 (1 -m)2 / (1+m)2 .  (8.4) 

For corrections to (8 .4 )  to account for terms of O(d/r,)  use may be made of 
equation (7.11) of Taylor (1923).  

By using, with m = 1 ,  (6 .8 )  and (6.18) without the last term on the right-hand 
side (this represents the contribution to a, due to the harmonic, about 1.7 yo) 

which gives a result for A,2/Ai identical with that obtained by Stuart (1958),  who 
ignored the harmonic and the distortion of the fundamental and based his calcu- 
lations on the neutral curve. Although one might expect Stuart’s method to give 
substantial errors in determining the equilibrium amplitude, it does not do so. 
His method gives an equation like 

+ dA2/dt = d A 2  + k,  A4, (8 .6 )  

where k,, k,  and terms of order CT have been omitted from the right-hand side; 
d is not the correct amplification rate of infinitesimal disturbances. However it 
turns out (when m = 1 )  that 

where k,, is the part (about 98 yo) of k, excluding that (k,,) due to the harmonic. 
Thus the two main deficiences of Stuart’s method cancel each other in the equi- 
librium state, though separately they are each substantial. This indicates that it 
is a very good approximation, when calculating the equilibrium amplitude, to 
use Stuart’s method for any value of m 0. It is clear, from figure 2 ,  that 
Stuart’s method also gives good results in the wide-gap problem of 3 5 .  

The question may be raised as to the necessity or desirability of studying the 
time-dependent problem, as is done in this paper, when comparison with experi- 
ment has been made only in the equilibrium (steady) state; moreover, the latter 
may be calculated by a method equivalent to that of Malkus & Veronis (1958) for 
the thermal-convection problem. There are three main reasons for considering 
the time-dependent problem. First, the additional algebra required is com- 
paratively small, and leads to a very similar numerical problem to that of the 
steady case. Secondly, a study of the time dependence puts the amplified solu- 
tions of linearized theory in perspective with the present finite-amplitude 

“‘/lC1 = g / ( k l  + k31) ,  (8 .7)  
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analysis. Thirdly, if such work is to be extended to consider the relative stability 
of different modes at finite amplitudes then it is vital to study the time de- 
pendence; see, for example, the work of Segel & Stuart (1962) on preferred modes 
in the thermal-convection problem. 
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